以太坊区块同步详解(以太坊同步需要几天)

同步模式

以太坊中区块同步包含以下三种模式:

  • full sync:从网络同步所有的区块头,区块体并重放区块中的交易以生成状态数据

  • fast sync:从网络同步所有的区块头,区块体以及状态数据,但不对区块中的交易进行重放,只会对区块中的数据进行校验

  • light sync:从网络中同步所有区块头,不去同步区块体,也不去同步状态数据,仅在需要相应区块和状态数据时从网络上获取

区块下载

区块下载流程示意图如下所示:

首先根据Synchronise开始区块同步,通过findAncestor找到指定节点的共同祖先,并在此高度进行同步,同时开启多个goroutine同步不同的数据:header、receipt、body,假如同步高度为100的区块,必须先header同步成功同步完成才可以进行body和receipts的同步,而每个部分的同步大致都是由FetchParts来完成的,里面包含了各个Chan的配合,也会涉及不少的回调函数

源码分析

数据结构

downloader数据结构如下所示:

// filedir:go-ethereum-1.10.2\\\\eth\\\\downloader\\\\downloader.go  L96type Downloader struct {  // WARNING: The `rttEstimate` and `rttConfidence` fields are accessed atomically.  // On 32 bit platforms, only 64-bit aligned fields can be atomic. The struct is  // guaranteed to be so aligned, so take advantage of that. For more information,  // see https://golang.org/pkg/sync/atomic/#pkg-note-BUG.  rttEstimate   uint64 // Round trip time to target for download requests  rttConfidence uint64 // Confidence in the estimated RTT (unit: millionths to allow atomic ops)
mode uint32 // Synchronisation mode defining the strategy used (per sync cycle), use d.getMode() to get the SyncMode mux *event.TypeMux // Event multiplexer to announce sync operation events
checkpoint uint64 // Checkpoint block number to enforce head against (e.g. fast sync) genesis uint64 // Genesis block number to limit sync to (e.g. light client CHT) queue *queue // Scheduler for selecting the hashes to download peers *peerSet // Set of active peers from which download can proceed
stateDB ethdb.Database // Database to state sync into (and deduplicate via) stateBloom *trie.SyncBloom // Bloom filter for fast trie node and contract code existence checks
// Statistics 统计信息, syncStatsChainOrigin uint64 // Origin block number where syncing started at syncStatsChainHeight uint64 // Highest block number known when syncing started syncStatsState stateSyncStats syncStatsLock sync.RWMutex // Lock protecting the sync stats fields
lightchain LightChain blockchain BlockChain
// Callbacks dropPeer peerDropFn // Drops a peer for misbehaving
// Status synchroniseMock func(id string, hash common.Hash) error // Replacement for synchronise during testing synchronising int32 notified int32 committed int32 ancientLimit uint64 // The maximum block number which can be regarded as ancient data.
// Channels headerCh chan dataPack // Channel receiving inbound block headers header的输入通道,从网络下载的header会被送到这个通道 bodyCh chan dataPack // Channel receiving inbound block bodies bodies的输入通道,从网络下载的bodies会被送到这个通道 receiptCh chan dataPack // Channel receiving inbound receipts receipts的输入通道,从网络下载的receipts会被送到这个通道 bodyWakeCh chan bool // Channel to signal the block body fetcher of new tasks 用来传输body fetcher新任务的通道 receiptWakeCh chan bool // Channel to signal the receipt fetcher of new tasks 用来传输receipt fetcher 新任务的通道 headerProcCh chan []*types.Header // Channel to feed the header processor new tasks 通道为header处理者提供新的任务
// State sync pivotHeader *types.Header // Pivot block header to dynamically push the syncing state root pivotLock sync.RWMutex // Lock protecting pivot header reads from updates
snapSync bool // Whether to run state sync over the snap protocol SnapSyncer *snap.Syncer // TODO(karalabe): make private! hack for now stateSyncStart chan *stateSync //启动新的state fetcher trackStateReq chan *stateReq stateCh chan dataPack // Channel receiving inbound node state data State的输入通道,从网络下载的State会被送到这个通道
// Cancellation and termination cancelPeer string // Identifier of the peer currently being used as the master (cancel on drop) cancelCh chan struct{} // Channel to cancel mid-flight syncs cancelLock sync.RWMutex // Lock to protect the cancel channel and peer in delivers cancelWg sync.WaitGroup // Make sure all fetcher goroutines have exited.
quitCh chan struct{} // Quit channel to signal termination quitLock sync.Mutex // Lock to prevent double closes
// Testing hooks syncInitHook func(uint64, uint64) // Method to call upon initiating a new sync run bodyFetchHook func([]*types.Header) // Method to call upon starting a block body fetch receiptFetchHook func([]*types.Header) // Method to call upon starting a receipt fetch chainInsertHook func([]*fetchResult) // Method to call upon inserting a chain of blocks (possibly in multiple invocations)}
构造方法

New用于初始化一个Downloader对象,具体代码如下所示:

// New creates a new downloader to fetch hashes and blocks from remote peers.func New(checkpoint uint64, stateDb ethdb.Database, stateBloom *trie.SyncBloom, mux *event.TypeMux, chain BlockChain, lightchain LightChain, dropPeer peerDropFn) *Downloader {  if lightchain == nil {    lightchain = chain  }  dl := &Downloader{    stateDB:        stateDb,    stateBloom:     stateBloom,    mux:            mux,    checkpoint:     checkpoint,    queue:          newQueue(blockCacheMaxItems, blockCacheInitialItems),    peers:          newPeerSet(),    rttEstimate:    uint64(rttMaxEstimate),    rttConfidence:  uint64(1000000),    blockchain:     chain,    lightchain:     lightchain,    dropPeer:       dropPeer,    headerCh:       make(chan dataPack, 1),    bodyCh:         make(chan dataPack, 1),    receiptCh:      make(chan dataPack, 1),    bodyWakeCh:     make(chan bool, 1),    receiptWakeCh:  make(chan bool, 1),    headerProcCh:   make(chan []*types.Header, 1),    quitCh:         make(chan struct{}),    stateCh:        make(chan dataPack),    SnapSyncer:     snap.NewSyncer(stateDb),    stateSyncStart: make(chan *stateSync),    syncStatsState: stateSyncStats{      processed: rawdb.ReadFastTrieProgress(stateDb),    },    trackStateReq: make(chan *stateReq),  }  go dl.qosTuner()        //计算rttEstimate和rttConfidence  go dl.stateFetcher()    //启动stateFetcher的任务监听  return dl}
同步下载

区块同步始于Synchronise函数,在这里会直接调用synchronise进行同步,如果同步过程中出现错误,则删除掉Peer:

// Synchronise tries to sync up our local block chain with a remote peer, both// adding various sanity checks as well as wrapping it with various log entries.func (d *Downloader) Synchronise(id string, head common.Hash, td *big.Int, mode SyncMode) error {  err := d.synchronise(id, head, td, mode)
switch err { case nil, errBusy, errCanceled: return err } if errors.Is(err, errInvalidChain) || errors.Is(err, errBadPeer) || errors.Is(err, errTimeout) || errors.Is(err, errStallingPeer) || errors.Is(err, errUnsyncedPeer) || errors.Is(err, errEmptyHeaderSet) || errors.Is(err, errPeersUnavailable) || errors.Is(err, errTooOld) || errors.Is(err, errInvalidAncestor) { log.Warn(\\\"Synchronisation failed, dropping peer\\\", \\\"peer\\\", id, \\\"err\\\", err) if d.dropPeer == nil { // The dropPeer method is nil when `--copydb` is used for a local copy. // Timeouts can occur if e.g. compaction hits at the wrong time, and can be ignored log.Warn(\\\"Downloader wants to drop peer, but peerdrop-function is not set\\\", \\\"peer\\\", id) } else { d.dropPeer(id) } return err } log.Warn(\\\"Synchronisation failed, retrying\\\", \\\"err\\\", err) return err}

synchronise函数实现代码如下:

// synchronise will select the peer and use it for synchronising. If an empty string is given// it will use the best peer possible and synchronize if its TD is higher than our own. If any of the// checks fail an error will be returned. This method is synchronousfunc (d *Downloader) synchronise(id string, hash common.Hash, td *big.Int, mode SyncMode) error {  // Mock out the synchronisation if testing  if d.synchroniseMock != nil {    return d.synchroniseMock(id, hash)  }  // Make sure only one goroutine is ever allowed past this point at once    // 只能运行一个, 检查是否正在运行  if !atomic.CompareAndSwapInt32(&d.synchronising, 0, 1) {    return errBusy  }  defer atomic.StoreInt32(&d.synchronising, 0)
// Post a user notification of the sync (only once per session) // 发布同步的用户通知(每个会话仅一次) if atomic.CompareAndSwapInt32(&d.notified, 0, 1) { log.Info(\\\"Block synchronisation started\\\") } // If we are already full syncing, but have a fast-sync bloom filter laying // around, make sure it doesn\\\'t use memory any more. This is a special case // when the user attempts to fast sync a new empty network. if mode == FullSync && d.stateBloom != nil { d.stateBloom.Close() } // If snap sync was requested, create the snap scheduler and switch to fast // sync mode. Long term we could drop fast sync or merge the two together, // but until snap becomes prevalent, we should support both. TODO(karalabe). if mode == SnapSync { if !d.snapSync { log.Warn(\\\"Enabling snapshot sync prototype\\\") d.snapSync = true } mode = FastSync } // Reset the queue, peer set and wake channels to clean any internal leftover state d.queue.Reset(blockCacheMaxItems, blockCacheInitialItems) // 重置queue的状态 d.peers.Reset() // 重置peer的状态
for _, ch := range []chan bool{d.bodyWakeCh, d.receiptWakeCh} { // 清空d.bodyWakeCh, d.receiptWakeCh select { case <-ch: default: } } for _, ch := range []chan dataPack{d.headerCh, d.bodyCh, d.receiptCh} { //清空d.headerCh, d.bodyCh, d.receiptCh for empty := false; !empty; { select { case <-ch: default: empty = true } } } for empty := false; !empty; { // 清空headerProcCh select { case <-d.headerProcCh: default: empty = true } } // Create cancel channel for aborting mid-flight and mark the master peer d.cancelLock.Lock() d.cancelCh = make(chan struct{}) d.cancelPeer = id d.cancelLock.Unlock()
defer d.Cancel() // No matter what, we can\\\'t leave the cancel channel open
// Atomically set the requested sync mode atomic.StoreUint32(&d.mode, uint32(mode))
// Retrieve the origin peer and initiate the downloading process p := d.peers.Peer(id) if p == nil { return errUnknownPeer } return d.syncWithPeer(p, hash, td) // 基于哈希链从指定的peer和head hash开始块同步}

syncWithPeer函数代码如下所示:

// filedir:go-ethereum-1.10.2\\\\eth\\\\downloader\\\\downloader.go  L448// syncWithPeer starts a block synchronization based on the hash chain from the// specified peer and head hash.func (d *Downloader) syncWithPeer(p *peerConnection, hash common.Hash, td *big.Int) (err error) {  d.mux.Post(StartEvent{})  defer func() {    // reset on error    if err != nil {      d.mux.Post(FailedEvent{err})    } else {      latest := d.lightchain.CurrentHeader()      d.mux.Post(DoneEvent{latest})    }  }()  if p.version < 64 {    return fmt.Errorf(\\\"%w: advertized %d < required %d\\\", errTooOld, p.version, 64)  }  mode := d.getMode()
log.Debug(\\\"Synchronising with the network\\\", \\\"peer\\\", p.id, \\\"eth\\\", p.version, \\\"head\\\", hash, \\\"td\\\", td, \\\"mode\\\", mode) defer func(start time.Time) { log.Debug(\\\"Synchronisation terminated\\\", \\\"elapsed\\\", common.PrettyDuration(time.Since(start))) }(time.Now())
// Look up the sync boundaries: the common ancestor and the target block latest, pivot, err := d.fetchHead(p) if err != nil { return err } if mode == FastSync && pivot == nil { // If no pivot block was returned, the head is below the min full block // threshold (i.e. new chian). In that case we won\\\'t really fast sync // anyway, but still need a valid pivot block to avoid some code hitting // nil panics on an access. pivot = d.blockchain.CurrentBlock().Header() } height := latest.Number.Uint64()
origin, err := d.findAncestor(p, latest) // 通过findAncestor来获取共同祖先,以便找到一个开始同步的点 if err != nil { return err } d.syncStatsLock.Lock() if d.syncStatsChainHeight <= origin || d.syncStatsChainOrigin > origin { d.syncStatsChainOrigin = origin } d.syncStatsChainHeight = height d.syncStatsLock.Unlock()
// Ensure our origin point is below any fast sync pivot point if mode == FastSync { if height <= uint64(fsMinFullBlocks) { // 如果对端节点的height小于64,则共同祖先更新为0 origin = 0 } else { // 否则更新pivot为对端节点height-64 pivotNumber := pivot.Number.Uint64() if pivotNumber <= origin { // 如果pivot小于共同祖先,则更新共同祖先为pivot的前一个 origin = pivotNumber - 1 } // Write out the pivot into the database so a rollback beyond it will // reenable fast sync rawdb.WriteLastPivotNumber(d.stateDB, pivotNumber) } } d.committed = 1 if mode == FastSync && pivot.Number.Uint64() != 0 { d.committed = 0 } if mode == FastSync { // Set the ancient data limitation. // If we are running fast sync, all block data older than ancientLimit will be // written to the ancient store. More recent data will be written to the active // database and will wait for the freezer to migrate. // // If there is a checkpoint available, then calculate the ancientLimit through // that. Otherwise calculate the ancient limit through the advertised height // of the remote peer. // // The reason for picking checkpoint first is that a malicious peer can give us // a fake (very high) height, forcing the ancient limit to also be very high. // The peer would start to feed us valid blocks until head, resulting in all of // the blocks might be written into the ancient store. A following mini-reorg // could cause issues. if d.checkpoint != 0 && d.checkpoint > fullMaxForkAncestry+1 { d.ancientLimit = d.checkpoint } else if height > fullMaxForkAncestry+1 { d.ancientLimit = height - fullMaxForkAncestry - 1 } else { d.ancientLimit = 0 } frozen, _ := d.stateDB.Ancients() // Ignore the error here since light client can also hit here.
// If a part of blockchain data has already been written into active store, // disable the ancient style insertion explicitly. if origin >= frozen && frozen != 0 { d.ancientLimit = 0 log.Info(\\\"Disabling direct-ancient mode\\\", \\\"origin\\\", origin, \\\"ancient\\\", frozen-1) } else if d.ancientLimit > 0 { log.Debug(\\\"Enabling direct-ancient mode\\\", \\\"ancient\\\", d.ancientLimit) } // Rewind the ancient store and blockchain if reorg happens. if origin+1 < frozen { if err := d.lightchain.SetHead(origin + 1); err != nil { return err } } } // Initiate the sync using a concurrent header and content retrieval algorithm d.queue.Prepare(origin+1, mode) // 更新queue的值从共同祖先+1开始,即从共同祖先开始sync区块 if d.syncInitHook != nil { d.syncInitHook(origin, height) } fetchers := []func() error{ func() error { return d.fetchHeaders(p, origin+1) }, // Headers are always retrieved func() error { return d.fetchBodies(origin + 1) }, // Bodies are retrieved during normal and fast sync func() error { return d.fetchReceipts(origin + 1) }, // Receipts are retrieved during fast sync func() error { return d.processHeaders(origin+1, td) }, } if mode == FastSync { //根据模式的不同,增加新的处理逻辑 d.pivotLock.Lock() d.pivotHeader = pivot d.pivotLock.Unlock()
fetchers = append(fetchers, func() error { return d.processFastSyncContent() }) } else if mode == FullSync { fetchers = append(fetchers, d.processFullSyncContent) } return d.spawnSync(fetchers)}

spawnSync会给每个fetcher启动一个goroutine, 然后阻塞的等待fetcher出错:

// spawnSync runs d.process and all given fetcher functions to completion in// separate goroutines, returning the first error that appears.func (d *Downloader) spawnSync(fetchers []func() error) error {  errc := make(chan error, len(fetchers))  d.cancelWg.Add(len(fetchers))  for _, fn := range fetchers {    fn := fn    go func() { defer d.cancelWg.Done(); errc <- fn() }()  }  // Wait for the first error, then terminate the others.  var err error  for i := 0; i < len(fetchers); i++ {    if i == len(fetchers)-1 {      // Close the queue when all fetchers have exited.      // This will cause the block processor to end when      // it has processed the queue.      d.queue.Close()    }    if err = <-errc; err != nil && err != errCanceled {      break    }  }  d.queue.Close()  d.Cancel()  return err}
同步State

state即世界状态,其保存着所有账户的余额等信息

// filedir: go-ethereum-1.10.2\\\\eth\\\\downloader\\\\statesync.go// stateFetcher manages the active state sync and accepts requests// on its behalf.func (d *Downloader) stateFetcher() {  for {    select {    case s := <-d.stateSyncStart:      for next := s; next != nil; {        next = d.runStateSync(next)      }    case <-d.stateCh:      // Ignore state responses while no sync is running.    case <-d.quitCh:      return    }  }}

runStateSync函数执行状态同步,直到它完成或请求切换到另一个根哈希:

// runStateSync runs a state synchronisation until it completes or another root// hash is requested to be switched over to.func (d *Downloader) runStateSync(s *stateSync) *stateSync {  var (    active   = make(map[string]*stateReq) // Currently in-flight requests    finished []*stateReq                  // Completed or failed requests    timeout  = make(chan *stateReq)       // Timed out active requests  )  log.Trace(\\\"State sync starting\\\", \\\"root\\\", s.root)
defer func() { // Cancel active request timers on exit. Also set peers to idle so they\\\'re // available for the next sync. for _, req := range active { req.timer.Stop() req.peer.SetNodeDataIdle(int(req.nItems), time.Now()) } }() go s.run() defer s.Cancel()
// Listen for peer departure events to cancel assigned tasks peerDrop := make(chan *peerConnection, 1024) peerSub := s.d.peers.SubscribePeerDrops(peerDrop) defer peerSub.Unsubscribe()
for { // Enable sending of the first buffered element if there is one. var ( deliverReq *stateReq deliverReqCh chan *stateReq ) if len(finished) > 0 { deliverReq = finished[0] deliverReqCh = s.deliver }
select { // The stateSync lifecycle: case next := <-d.stateSyncStart: d.spindownStateSync(active, finished, timeout, peerDrop) return next
case <-s.done: d.spindownStateSync(active, finished, timeout, peerDrop) return nil
// Send the next finished request to the current sync: case deliverReqCh <- deliverReq: // Shift out the first request, but also set the emptied slot to nil for GC copy(finished, finished[1:]) finished[len(finished)-1] = nil finished = finished[:len(finished)-1]
// Handle incoming state packs: case pack := <-d.stateCh: // Discard any data not requested (or previously timed out) req := active[pack.PeerId()] if req == nil { log.Debug(\\\"Unrequested node data\\\", \\\"peer\\\", pack.PeerId(), \\\"len\\\", pack.Items()) continue } // Finalize the request and queue up for processing req.timer.Stop() req.response = pack.(*statePack).states req.delivered = time.Now()
finished = append(finished, req) delete(active, pack.PeerId())
// Handle dropped peer connections: case p := <-peerDrop: // Skip if no request is currently pending req := active[p.id] if req == nil { continue } // Finalize the request and queue up for processing req.timer.Stop() req.dropped = true req.delivered = time.Now()
finished = append(finished, req) delete(active, p.id)
// Handle timed-out requests: case req := <-timeout: // If the peer is already requesting something else, ignore the stale timeout. // This can happen when the timeout and the delivery happens simultaneously, // causing both pathways to trigger. if active[req.peer.id] != req { continue } req.delivered = time.Now() // Move the timed out data back into the download queue finished = append(finished, req) delete(active, req.peer.id)
// Track outgoing state requests: case req := <-d.trackStateReq: // If an active request already exists for this peer, we have a problem. In // theory the trie node schedule must never assign two requests to the same // peer. In practice however, a peer might receive a request, disconnect and // immediately reconnect before the previous times out. In this case the first // request is never honored, alas we must not silently overwrite it, as that // causes valid requests to go missing and sync to get stuck. if old := active[req.peer.id]; old != nil { log.Warn(\\\"Busy peer assigned new state fetch\\\", \\\"peer\\\", old.peer.id) // Move the previous request to the finished set old.timer.Stop() old.dropped = true old.delivered = time.Now() finished = append(finished, old) } // Start a timer to notify the sync loop if the peer stalled. req.timer = time.AfterFunc(req.timeout, func() { timeout <- req }) active[req.peer.id] = req } }}
同步Head
// fetchHead retrieves the head header and prior pivot block (if available) from// a remote peer.func (d *Downloader) fetchHead(p *peerConnection) (head *types.Header, pivot *types.Header, err error) {  p.log.Debug(\\\"Retrieving remote chain head\\\")  mode := d.getMode()
// Request the advertised remote head block and wait for the response latest, _ := p.peer.Head() fetch := 1 if mode == FastSync { fetch = 2 // head + pivot headers } go p.peer.RequestHeadersByHash(latest, fetch, fsMinFullBlocks-1, true)
ttl := d.requestTTL() timeout := time.After(ttl) for { select { case <-d.cancelCh: return nil, nil, errCanceled
case packet := <-d.headerCh: // Discard anything not from the origin peer if packet.PeerId() != p.id { log.Debug(\\\"Received headers from incorrect peer\\\", \\\"peer\\\", packet.PeerId()) break } // Make sure the peer gave us at least one and at most the requested headers headers := packet.(*headerPack).headers if len(headers) == 0 || len(headers) > fetch { return nil, nil, fmt.Errorf(\\\"%w: returned headers %d != requested %d\\\", errBadPeer, len(headers), fetch) } // The first header needs to be the head, validate against the checkpoint // and request. If only 1 header was returned, make sure there\\\'s no pivot // or there was not one requested. head := headers[0] if (mode == FastSync || mode == LightSync) && head.Number.Uint64() < d.checkpoint { return nil, nil, fmt.Errorf(\\\"%w: remote head %d below checkpoint %d\\\", errUnsyncedPeer, head.Number, d.checkpoint) } if len(headers) == 1 { if mode == FastSync && head.Number.Uint64() > uint64(fsMinFullBlocks) { return nil, nil, fmt.Errorf(\\\"%w: no pivot included along head header\\\", errBadPeer) } p.log.Debug(\\\"Remote head identified, no pivot\\\", \\\"number\\\", head.Number, \\\"hash\\\", head.Hash()) return head, nil, nil } // At this point we have 2 headers in total and the first is the // validated head of the chian. Check the pivot number and return, pivot := headers[1] if pivot.Number.Uint64() != head.Number.Uint64()-uint64(fsMinFullBlocks) { return nil, nil, fmt.Errorf(\\\"%w: remote pivot %d != requested %d\\\", errInvalidChain, pivot.Number, head.Number.Uint64()-uint64(fsMinFullBlocks)) } return head, pivot, nil
case <-timeout: p.log.Debug(\\\"Waiting for head header timed out\\\", \\\"elapsed\\\", ttl) return nil, nil, errTimeout
case <-d.bodyCh: case <-d.receiptCh: // Out of bounds delivery, ignore } }}
处理Head
// processHeaders takes batches of retrieved headers from an input channel and// keeps processing and scheduling them into the header chain and downloader\\\'s// queue until the stream ends or a failure occurs.func (d *Downloader) processHeaders(origin uint64, td *big.Int) error {  // Keep a count of uncertain headers to roll back  var (    rollback    uint64 // Zero means no rollback (fine as you can\\\'t unroll the genesis)    rollbackErr error    mode        = d.getMode()  )  defer func() {    if rollback > 0 {      lastHeader, lastFastBlock, lastBlock := d.lightchain.CurrentHeader().Number, common.Big0, common.Big0      if mode != LightSync {        lastFastBlock = d.blockchain.CurrentFastBlock().Number()        lastBlock = d.blockchain.CurrentBlock().Number()      }      if err := d.lightchain.SetHead(rollback - 1); err != nil { // -1 to target the parent of the first uncertain block        // We\\\'re already unwinding the stack, only print the error to make it more visible        log.Error(\\\"Failed to roll back chain segment\\\", \\\"head\\\", rollback-1, \\\"err\\\", err)      }      curFastBlock, curBlock := common.Big0, common.Big0      if mode != LightSync {        curFastBlock = d.blockchain.CurrentFastBlock().Number()        curBlock = d.blockchain.CurrentBlock().Number()      }      log.Warn(\\\"Rolled back chain segment\\\",        \\\"header\\\", fmt.Sprintf(\\\"%d->%d\\\", lastHeader, d.lightchain.CurrentHeader().Number),        \\\"fast\\\", fmt.Sprintf(\\\"%d->%d\\\", lastFastBlock, curFastBlock),        \\\"block\\\", fmt.Sprintf(\\\"%d->%d\\\", lastBlock, curBlock), \\\"reason\\\", rollbackErr)    }  }()  // Wait for batches of headers to process  gotHeaders := false
for { select { case <-d.cancelCh: rollbackErr = errCanceled return errCanceled
case headers := <-d.headerProcCh: // Terminate header processing if we synced up if len(headers) == 0 { // Notify everyone that headers are fully processed for _, ch := range []chan bool{d.bodyWakeCh, d.receiptWakeCh} { select { case ch <- false: case <-d.cancelCh: } } // If no headers were retrieved at all, the peer violated its TD promise that it had a // better chain compared to ours. The only exception is if its promised blocks were // already imported by other means (e.g. fetcher): // // R <remote peer>, L <local node>: Both at block 10 // R: Mine block 11, and propagate it to L // L: Queue block 11 for import // L: Notice that R\\\'s head and TD increased compared to ours, start sync // L: Import of block 11 finishes // L: Sync begins, and finds common ancestor at 11 // L: Request new headers up from 11 (R\\\'s TD was higher, it must have something) // R: Nothing to give if mode != LightSync { head := d.blockchain.CurrentBlock() if !gotHeaders && td.Cmp(d.blockchain.GetTd(head.Hash(), head.NumberU64())) > 0 { return errStallingPeer } } // If fast or light syncing, ensure promised headers are indeed delivered. This is // needed to detect scenarios where an attacker feeds a bad pivot and then bails out // of delivering the post-pivot blocks that would flag the invalid content. // // This check cannot be executed \\\"as is\\\" for full imports, since blocks may still be // queued for processing when the header download completes. However, as long as the // peer gave us something useful, we\\\'re already happy/progressed (above check). if mode == FastSync || mode == LightSync { head := d.lightchain.CurrentHeader() if td.Cmp(d.lightchain.GetTd(head.Hash(), head.Number.Uint64())) > 0 { return errStallingPeer } } // Disable any rollback and return rollback = 0 return nil } // Otherwise split the chunk of headers into batches and process them gotHeaders = true for len(headers) > 0 { // Terminate if something failed in between processing chunks select { case <-d.cancelCh: rollbackErr = errCanceled return errCanceled default: } // Select the next chunk of headers to import limit := maxHeadersProcess if limit > len(headers) { limit = len(headers) } chunk := headers[:limit]
// In case of header only syncing, validate the chunk immediately if mode == FastSync || mode == LightSync { // If we\\\'re importing pure headers, verify based on their recentness var pivot uint64
d.pivotLock.RLock() if d.pivotHeader != nil { pivot = d.pivotHeader.Number.Uint64() } d.pivotLock.RUnlock()
frequency := fsHeaderCheckFrequency if chunk[len(chunk)-1].Number.Uint64()+uint64(fsHeaderForceVerify) > pivot { frequency = 1 } if n, err := d.lightchain.InsertHeaderChain(chunk, frequency); err != nil { rollbackErr = err
// If some headers were inserted, track them as uncertain if (mode == FastSync || frequency > 1) && n > 0 && rollback == 0 { rollback = chunk[0].Number.Uint64() } log.Warn(\\\"Invalid header encountered\\\", \\\"number\\\", chunk[n].Number, \\\"hash\\\", chunk[n].Hash(), \\\"parent\\\", chunk[n].ParentHash, \\\"err\\\", err) return fmt.Errorf(\\\"%w: %v\\\", errInvalidChain, err) } // All verifications passed, track all headers within the alloted limits if mode == FastSync { head := chunk[len(chunk)-1].Number.Uint64() if head-rollback > uint64(fsHeaderSafetyNet) { rollback = head - uint64(fsHeaderSafetyNet) } else { rollback = 1 } } } // Unless we\\\'re doing light chains, schedule the headers for associated content retrieval if mode == FullSync || mode == FastSync { // If we\\\'ve reached the allowed number of pending headers, stall a bit for d.queue.PendingBlocks() >= maxQueuedHeaders || d.queue.PendingReceipts() >= maxQueuedHeaders { select { case <-d.cancelCh: rollbackErr = errCanceled return errCanceled case <-time.After(time.Second): } } // Otherwise insert the headers for content retrieval inserts := d.queue.Schedule(chunk, origin) if len(inserts) != len(chunk) { rollbackErr = fmt.Errorf(\\\"stale headers: len inserts %v len(chunk) %v\\\", len(inserts), len(chunk)) return fmt.Errorf(\\\"%w: stale headers\\\", errBadPeer) } } headers = headers[limit:] origin += uint64(limit) } // Update the highest block number we know if a higher one is found. d.syncStatsLock.Lock() if d.syncStatsChainHeight < origin { d.syncStatsChainHeight = origin - 1 } d.syncStatsLock.Unlock()
// Signal the content downloaders of the availablility of new tasks for _, ch := range []chan bool{d.bodyWakeCh, d.receiptWakeCh} { select { case ch <- true: default: } } } }}
同步Body
// fetchBodies iteratively downloads the scheduled block bodies, taking any// available peers, reserving a chunk of blocks for each, waiting for delivery// and also periodically checking for timeouts.func (d *Downloader) fetchBodies(from uint64) error {  log.Debug(\\\"Downloading block bodies\\\", \\\"origin\\\", from)
var ( deliver = func(packet dataPack) (int, error) { pack := packet.(*bodyPack) return d.queue.DeliverBodies(pack.peerID, pack.transactions, pack.uncles) } expire = func() map[string]int { return d.queue.ExpireBodies(d.requestTTL()) } fetch = func(p *peerConnection, req *fetchRequest) error { return p.FetchBodies(req) } capacity = func(p *peerConnection) int { return p.BlockCapacity(d.requestRTT()) } setIdle = func(p *peerConnection, accepted int, deliveryTime time.Time) { p.SetBodiesIdle(accepted, deliveryTime) } ) err := d.fetchParts(d.bodyCh, deliver, d.bodyWakeCh, expire, d.queue.PendingBlocks, d.queue.InFlightBlocks, d.queue.ReserveBodies, d.bodyFetchHook, fetch, d.queue.CancelBodies, capacity, d.peers.BodyIdlePeers, setIdle, \\\"bodies\\\")
log.Debug(\\\"Block body download terminated\\\", \\\"err\\\", err) return err}
// DeliverBodies injects a new batch of block bodies received from a remote node.func (d *Downloader) DeliverBodies(id string, transactions [][]*types.Transaction, uncles [][]*types.Header) error {  return d.deliver(d.bodyCh, &bodyPack{id, transactions, uncles}, bodyInMeter, bodyDropMeter)}
// deliver injects a new batch of data received from a remote node.func (d *Downloader) deliver(destCh chan dataPack, packet dataPack, inMeter, dropMeter metrics.Meter) (err error) {  // Update the delivery metrics for both good and failed deliveries  inMeter.Mark(int64(packet.Items()))  defer func() {    if err != nil {      dropMeter.Mark(int64(packet.Items()))    }  }()  // Deliver or abort if the sync is canceled while queuing  d.cancelLock.RLock()  cancel := d.cancelCh  d.cancelLock.RUnlock()  if cancel == nil {    return errNoSyncActive  }  select {  case destCh <- packet:    return nil  case <-cancel:    return errNoSyncActive  }}
    func (d *Downloader) fetchParts(deliveryCh chan dataPack, deliver func(dataPack) (int, error), wakeCh chan bool,  expire func() map[string]int, pending func() int, inFlight func() bool, reserve func(*peerConnection, int) (*fetchRequest, bool, bool),  fetchHook func([]*types.Header), fetch func(*peerConnection, *fetchRequest) error, cancel func(*fetchRequest), capacity func(*peerConnection) int,  idle func() ([]*peerConnection, int), setIdle func(*peerConnection, int, time.Time), kind string) error {
    // Create a ticker to detect expired retrieval tasks ticker := time.NewTicker(100 * time.Millisecond) defer ticker.Stop()
    update := make(chan struct{}, 1)
    // Prepare the queue and fetch block parts until the block header fetcher\\\'s done finished := false for { select { case <-d.cancelCh: return errCanceled
    case packet := <-deliveryCh: deliveryTime := time.Now() // If the peer was previously banned and failed to deliver its pack // in a reasonable time frame, ignore its message. if peer := d.peers.Peer(packet.PeerId()); peer != nil { // Deliver the received chunk of data and check chain validity accepted, err := deliver(packet) if errors.Is(err, errInvalidChain) { return err } // Unless a peer delivered something completely else than requested (usually // caused by a timed out request which came through in the end), set it to // idle. If the delivery\\\'s stale, the peer should have already been idled. if !errors.Is(err, errStaleDelivery) { setIdle(peer, accepted, deliveryTime) } // Issue a log to the user to see what\\\'s going on switch { case err == nil && packet.Items() == 0: peer.log.Trace(\\\"Requested data not delivered\\\", \\\"type\\\", kind) case err == nil: peer.log.Trace(\\\"Delivered new batch of data\\\", \\\"type\\\", kind, \\\"count\\\", packet.Stats()) default: peer.log.Debug(\\\"Failed to deliver retrieved data\\\", \\\"type\\\", kind, \\\"err\\\", err) } } // Blocks assembled, try to update the progress select { case update <- struct{}{}: default: }
    case cont := <-wakeCh: // The header fetcher sent a continuation flag, check if it\\\'s done if !cont { finished = true } // Headers arrive, try to update the progress select { case update <- struct{}{}: default: }
    case <-ticker.C: // Sanity check update the progress select { case update <- struct{}{}: default: }
    case <-update: // Short circuit if we lost all our peers if d.peers.Len() == 0 { return errNoPeers } // Check for fetch request timeouts and demote the responsible peers for pid, fails := range expire() { if peer := d.peers.Peer(pid); peer != nil { // If a lot of retrieval elements expired, we might have overestimated the remote peer or perhaps // ourselves. Only reset to minimal throughput but don\\\'t drop just yet. If even the minimal times // out that sync wise we need to get rid of the peer. // // The reason the minimum threshold is 2 is because the downloader tries to estimate the bandwidth // and latency of a peer separately, which requires pushing the measures capacity a bit and seeing // how response times reacts, to it always requests one more than the minimum (i.e. min 2). if fails > 2 { peer.log.Trace(\\\"Data delivery timed out\\\", \\\"type\\\", kind) setIdle(peer, 0, time.Now()) } else { peer.log.Debug(\\\"Stalling delivery, dropping\\\", \\\"type\\\", kind)
    if d.dropPeer == nil { // The dropPeer method is nil when `--copydb` is used for a local copy. // Timeouts can occur if e.g. compaction hits at the wrong time, and can be ignored peer.log.Warn(\\\"Downloader wants to drop peer, but peerdrop-function is not set\\\", \\\"peer\\\", pid) } else { d.dropPeer(pid)
    // If this peer was the master peer, abort sync immediately d.cancelLock.RLock() master := pid == d.cancelPeer d.cancelLock.RUnlock()
    if master { d.cancel() return errTimeout } } } } } // If there\\\'s nothing more to fetch, wait or terminate if pending() == 0 { if !inFlight() && finished { log.Debug(\\\"Data fetching completed\\\", \\\"type\\\", kind) return nil } break } // Send a download request to all idle peers, until throttled progressed, throttled, running := false, false, inFlight() idles, total := idle() pendCount := pending() for _, peer := range idles { // Short circuit if throttling activated if throttled { break } // Short circuit if there is no more available task. if pendCount = pending(); pendCount == 0 { break } // Reserve a chunk of fetches for a peer. A nil can mean either that // no more headers are available, or that the peer is known not to // have them. request, progress, throttle := reserve(peer, capacity(peer)) if progress { progressed = true } if throttle { throttled = true throttleCounter.Inc(1) } if request == nil { continue } if request.From > 0 { peer.log.Trace(\\\"Requesting new batch of data\\\", \\\"type\\\", kind, \\\"from\\\", request.From) } else { peer.log.Trace(\\\"Requesting new batch of data\\\", \\\"type\\\", kind, \\\"count\\\", len(request.Headers), \\\"from\\\", request.Headers[0].Number) } // Fetch the chunk and make sure any errors return the hashes to the queue if fetchHook != nil { fetchHook(request.Headers) } if err := fetch(peer, request); err != nil { // Although we could try and make an attempt to fix this, this error really // means that we\\\'ve double allocated a fetch task to a peer. If that is the // case, the internal state of the downloader and the queue is very wrong so // better hard crash and note the error instead of silently accumulating into // a much bigger issue. panic(fmt.Sprintf(\\\"%v: %s fetch assignment failed\\\", peer, kind)) } running = true } // Make sure that we have peers available for fetching. If all peers have been tried // and all failed throw an error if !progressed && !throttled && !running && len(idles) == total && pendCount > 0 { return errPeersUnavailable } } }}
    同步收据
    // fetchReceipts iteratively downloads the scheduled block receipts, taking any// available peers, reserving a chunk of receipts for each, waiting for delivery// and also periodically checking for timeouts.func (d *Downloader) fetchReceipts(from uint64) error {  log.Debug(\\\"Downloading transaction receipts\\\", \\\"origin\\\", from)
    var ( deliver = func(packet dataPack) (int, error) { pack := packet.(*receiptPack) return d.queue.DeliverReceipts(pack.peerID, pack.receipts) } expire = func() map[string]int { return d.queue.ExpireReceipts(d.requestTTL()) } fetch = func(p *peerConnection, req *fetchRequest) error { return p.FetchReceipts(req) } capacity = func(p *peerConnection) int { return p.ReceiptCapacity(d.requestRTT()) } setIdle = func(p *peerConnection, accepted int, deliveryTime time.Time) { p.SetReceiptsIdle(accepted, deliveryTime) } ) err := d.fetchParts(d.receiptCh, deliver, d.receiptWakeCh, expire, d.queue.PendingReceipts, d.queue.InFlightReceipts, d.queue.ReserveReceipts, d.receiptFetchHook, fetch, d.queue.CancelReceipts, capacity, d.peers.ReceiptIdlePeers, setIdle, \\\"receipts\\\")
    log.Debug(\\\"Transaction receipt download terminated\\\", \\\"err\\\", err) return err}
    // DeliverReceipts injects a new batch of receipts received from a remote node.func (d *Downloader) DeliverReceipts(id string, receipts [][]*types.Receipt) error {  return d.deliver(d.receiptCh, &receiptPack{id, receipts}, receiptInMeter, receiptDropMeter)}
    // deliver injects a new batch of data received from a remote node.func (d *Downloader) deliver(destCh chan dataPack, packet dataPack, inMeter, dropMeter metrics.Meter) (err error) {  // Update the delivery metrics for both good and failed deliveries  inMeter.Mark(int64(packet.Items()))  defer func() {    if err != nil {      dropMeter.Mark(int64(packet.Items()))    }  }()  // Deliver or abort if the sync is canceled while queuing  d.cancelLock.RLock()  cancel := d.cancelCh  d.cancelLock.RUnlock()  if cancel == nil {    return errNoSyncActive  }  select {  case destCh <- packet:    return nil  case <-cancel:    return errNoSyncActive  }}

    Content

      // processFullSyncContent takes fetch results from the queue and imports them into the chain.func (d *Downloader) processFullSyncContent() error {  for {    results := d.queue.Results(true)    if len(results) == 0 {      return nil    }    if d.chainInsertHook != nil {      d.chainInsertHook(results)    }    if err := d.importBlockResults(results); err != nil {      return err    }  }}
        // processFastSyncContent takes fetch results from the queue and writes them to the// database. It also controls the synchronisation of state nodes of the pivot block.func (d *Downloader) processFastSyncContent() error {  // Start syncing state of the reported head block. This should get us most of  // the state of the pivot block.  d.pivotLock.RLock()  sync := d.syncState(d.pivotHeader.Root)  d.pivotLock.RUnlock()
        defer func() { // The `sync` object is replaced every time the pivot moves. We need to // defer close the very last active one, hence the lazy evaluation vs. // calling defer sync.Cancel() !!! sync.Cancel() }()
        closeOnErr := func(s *stateSync) { if err := s.Wait(); err != nil && err != errCancelStateFetch && err != errCanceled && err != snap.ErrCancelled { d.queue.Close() // wake up Results } } go closeOnErr(sync)
        // To cater for moving pivot points, track the pivot block and subsequently // accumulated download results separately. var ( oldPivot *fetchResult // Locked in pivot block, might change eventually oldTail []*fetchResult // Downloaded content after the pivot ) for { // Wait for the next batch of downloaded data to be available, and if the pivot // block became stale, move the goalpost results := d.queue.Results(oldPivot == nil) // Block if we\\\'re not monitoring pivot staleness if len(results) == 0 { // If pivot sync is done, stop if oldPivot == nil { return sync.Cancel() } // If sync failed, stop select { case <-d.cancelCh: sync.Cancel() return errCanceled default: } } if d.chainInsertHook != nil { d.chainInsertHook(results) } // If we haven\\\'t downloaded the pivot block yet, check pivot staleness // notifications from the header downloader d.pivotLock.RLock() pivot := d.pivotHeader d.pivotLock.RUnlock()
        if oldPivot == nil { if pivot.Root != sync.root { sync.Cancel() sync = d.syncState(pivot.Root)
        go closeOnErr(sync) } } else { results = append(append([]*fetchResult{oldPivot}, oldTail...), results...) } // Split around the pivot block and process the two sides via fast/full sync if atomic.LoadInt32(&d.committed) == 0 { latest := results[len(results)-1].Header // If the height is above the pivot block by 2 sets, it means the pivot // become stale in the network and it was garbage collected, move to a // new pivot. // // Note, we have `reorgProtHeaderDelay` number of blocks withheld, Those // need to be taken into account, otherwise we\\\'re detecting the pivot move // late and will drop peers due to unavailable state!!! if height := latest.Number.Uint64(); height >= pivot.Number.Uint64()+2*uint64(fsMinFullBlocks)-uint64(reorgProtHeaderDelay) { log.Warn(\\\"Pivot became stale, moving\\\", \\\"old\\\", pivot.Number.Uint64(), \\\"new\\\", height-uint64(fsMinFullBlocks)+uint64(reorgProtHeaderDelay)) pivot = results[len(results)-1-fsMinFullBlocks+reorgProtHeaderDelay].Header // must exist as lower old pivot is uncommitted
        d.pivotLock.Lock() d.pivotHeader = pivot d.pivotLock.Unlock()
        // Write out the pivot into the database so a rollback beyond it will // reenable fast sync rawdb.WriteLastPivotNumber(d.stateDB, pivot.Number.Uint64()) } } P, beforeP, afterP := splitAroundPivot(pivot.Number.Uint64(), results) if err := d.commitFastSyncData(beforeP, sync); err != nil { return err } if P != nil { // If new pivot block found, cancel old state retrieval and restart if oldPivot != P { sync.Cancel() sync = d.syncState(P.Header.Root)
        go closeOnErr(sync) oldPivot = P } // Wait for completion, occasionally checking for pivot staleness select { case <-sync.done: if sync.err != nil { return sync.err } if err := d.commitPivotBlock(P); err != nil { return err } oldPivot = nil
        case <-time.After(time.Second): oldTail = afterP continue } } // Fast sync done, pivot commit done, full import if err := d.importBlockResults(afterP); err != nil { return err } }}

        参考链接

        https://www.jianshu.com/p/427fbc3a25f9

        https://blog.csdn.net/pulong0748/article/details/111574388

        原创文章,作者:七芒星实验室,如若转载,请注明出处:https://www.sudun.com/ask/34339.html

        (0)
        七芒星实验室的头像七芒星实验室
        上一篇 2024年4月20日
        下一篇 2024年4月20日

        相关推荐

        发表回复

        您的电子邮箱地址不会被公开。 必填项已用 * 标注